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Summary 

Sun-induced fluorescence (SIF) has been emerged as unique and relatively novel 

remote sensing (RS) signal in the contemporary era to understand and monitor the 

terrestrial vegetation activity as well as their structural and functional diversity. The 

research and applicability potential of SIF has been well recognized by scientists. 

The SIF signal is emitted from the core of photosynthetic processes and is directly 

linked to plant photosynthetic activity and plant health conditions. As SIF signal 

originates from the core of photosynthetic activity, which is an important 

biochemical process in terrestrial ecosystems that regulates gas exchange between 

the atmosphere and biosphere, the significance of SIF science is high and is 

permanently increasing with development of new methods of its retrieval from 

spectroscopic data and application of new remote sensing platforms and systems to 

measure SIF from ground, near-atmosphere (UAV, airborne) and space (satellites). 

The advancement of optical and hyperspectral RS technologies offers currently 

unique possibilities to capture and estimate SIF signals and reflectances (R) in order 

to monitor the status of terrestrial vegetation, their phenology, and ecosystem 

functions. Narrow-band hyperspectral imaging spectrometers are rapidly evolving 

and provide unique opportunities for monitoring SIF signals at both O2 absorption 

bands and R at different wavelengths.  

In this PhD research, HyPlant airborne imaging spectrometer (the airborne 

demonstrator of European Space Agency’s FLEX FLORIS satellite) has been 

extensively implemented to estimate, monitor, and model SIF signals at both O2 

absorption bands over heterogeneous peatland and surrounded forest and 

grasslands ecosystems for the first time. HyPlant is a high-performance airborne 

spectrometer to measure R and SIF developed by Forschungszentrum Jülich, 

(Germany) in cooperation with SPECIM Spectral Imaging Ltd. (Finland). Most 

important part of the research conducted within this PhD is based on the HyPlant 

airborne campaign held in July 2015 over Rzecin peatland located in the western 

part of Poland.  

The PhD is based on the four research papers published in period 2019-2021 in 

journals with impact factor from 1.53 to 4.85.  The structure of the PhD reflects the 

content of these papers, starts from general introduction to the PhD topic and its 

objectives and applied methods and ends with summary and conclusions. This PhD 

thesis is divided into six chapters.  

Chapter 1 outlines a general introduction to the PhD dissertation and SIF. The 

objectives and hypothesis of the thesis have been discussed in this chapter. The 

origin and types of the SIF signals from plant photosynthetic activity has been also 

discussed. The HyPlant airborne campaign details along with the short description 

of the applied methods used to verify the research hypothesis have been also 

described. 

Chapter 2 addresses the comprehensive and current state-of-the-art review on Top-

of-Canopy (TOC) SIF studies from the ground, UAV, airborne to spaceborne 

observations. The review focuses on the studies that have been conducted on SIF 
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measurement techniques, retrieval algorithms, modelling, application and 

validation, incorporating different RS observations platforms and sensor along with 

their present limitations.  

Chapter 3 represents the first airborne SIF maps at both O2 absorption bands at 

687nm and 760nm of the Rzecin peatland and surrounding ecosystems. This chapter 

also shows the degree of agreement between SIF signals at both O2 absorption bands 

and spectral indices which were associated with plant structural and functional 

traits. It also represents the sensitivity of the SIF signals with productivity gradient 

at ecosystem scale and plant community scale.   

Chapter 4 is a machine-learning-based methodological model chapter that shows 

the simulation of SIF signals at 687nm and 760nm in a step-wise approximation 

manner from simple spectral vegetation indices (NDVI, SR, NDVIre, EVI, PRI) using 

airborne imaging spectrometric data through fuzzy modelling and data integration 

techniques. It was shown that the fuzzy modelled approach can accurately 

approximate the SIF signals at both O2 absorption bands from vegetation traits as 

well as can capture the structural and functional diversity of the vegetation at the 

ecosystem scale. 

Chapter 5 represents the importance of reflectance satellite-based vegetation 

spectroscopic measurements through various spectral indices, in estimations of 

gross primary productivity (GPP) and net photosynthesis (PsnNet) of tropical 

ecosystems. It outlines a comparative investigation of different correlation methods 

(i.e., Pearson product, Spearman rank, and Kendall rank) and supervised machine 

learning models (i.e., random forest, conditional inference forests, and quantile 

regression forests) to explore the agreement and possibility of prediction of GPP and 

PsnNet based on spectral indices, tasselled cap transformations, and reflectances 

over a mixed ecosystems under tropical seasonal variability.  

Chapter 6 provides the synthesis and conclusions of the PhD thesis. The overall 

conclusion indicates that the developing science about SIF incorporating modern RS 

technology has emerged and opened new direction advancing the knowledge in 

terrestrial vegetation and the global carbon cycle, with the development of the 

ground-based instruments such as FloXbox (JB Hyperspectral Devices GmbH, 

Germany) and PICCOLO-DOPPIO (The University of Edinburgh, UK), airborne 

sensors like HyPlant, and upcoming space missions like the Fluorescence Explorer 

(FLEX) Fluorescence Imaging Spectrometer (FLORIS) of European Space Agency 

(ESA) satellite, etc.  

The PhD results provided the first experimental evidence that through the red 

(SIF687) and far-red (SIF760) chlorophyll fluorescence signals it is possible to capture 

the huge spatial heterogeneity of peatland, forest and grassland ecosystems 

representing different photosynthetic activity, biochemical and structural traits of 

diversified plant communities and hence to facilitate the assessments of the wide 

functional diversity of vegetation canopies. Furthermore, it has been observed that 

the developed fuzzy modelling techniques named SIFfuzzy and SIFfuzzy-APAR can 

approximate the original SIF signals at both O2 absorption bands with high accuracy 

and also is able to represent the structural and functional diversity of plant canopies. 
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This research has also indicated that the differences in meteorological and 

environmental conditions have an impact on plant functional activities observed 

through satellite observed reflectances that significantly differ the prediction 

process of GPP and PsnNet based on the remote sensing approaches. 

 

Keywords: Sun-induced fluorescence (SIF); Spectral vegetation indices; HyPlant; 

Imaging spectroscopy; Fuzzy modelling; Machine learning; Gross primary 

productivity (GPP); Peatland; Forest; Grassland. 

 

Streszczenie  
 

Fluorescencja indukowana promieniowaniem słonecznym (SIF) jest unikalnym i 

stosunkowo nowym sygnałem teledetekcyjnym (RS) wykorzystywanym do 

zrozumienia i monitorowania aktywności roślinności ekosystemów lądowych, a 

także różnorodności strukturalnej i funkcjonalnej naturalnych ekosystemów. 

Potencjał badawczy i aplikacyjny SIF jest dobrze rozpoznany przez naukowców. SIF 

jest sygnałem emitowanym przez cząsteczki chlorofilu i jest bezpośrednio 

powiązany z aktywnością fotosyntetyczną roślin oraz ich warunkami zdrowotnymi. 

Ponieważ SIF jest powiązany z aktywnością fotosyntetyczną roślin, która jest 

ważnym procesem biochemicznym w ekosystemach lądowych regulującym 

wymianę gazową między atmosferą a biosferą, znaczenie nauki o SIF jest bardzo 

duże i ciągle rośnie wraz z wprowadzaniem nowych metod szacowania SIF na 

podstawie danych spektrometrycznych oraz stosowanie nowych platform 

teledetekcyjnych i systemów do pomiarów SIF z poziomu gruntu, z poziomu 

lotniczego i z przestrzeni kosmicznej (za pomocą satelitów). Postęp w optycznych i 

hiperspektralnych technologiach teledetekcyjnych oferuje obecnie unikalne 

możliwości pomiaru i szacowania SIF oraz reflektancji (R) w celu monitorowania 

stanu roślinności ekosystemów lądowych, ich fenologii i funkcji ekosystemowych. 

Wąskopasmowe spektrometry do obrazowania hiperspektralnego szybko ewoluują 

i zapewniają wyjątkowe możliwości monitorowania sygnałów SIF w obu pasmach 

absorpcji O2 i reflektancji przy różnych długościach fal. 

W ramach badań stanowiących podstawę niniejszej rozprawy doktorskiej 

wykorzystany został spektrometr HyPlant do obrazowania hiperspektralnego z 

poziomu lotniczego (prototypowy demonstrator satelity FLEX FLORIS Europejskiej 

Agencji Kosmicznej). System ten po raz pierwszy wykorzystano do szacowania, 

monitorowania i modelowania sygnałów SIF w obu pasmach absorpcji O2 dla 

niejednorodnych powierzchni torfowiska oraz przyległych ekosystemów leśnych i 

łąkowych. HyPlant to wysokowydajny spektrometr do pomiaru R i SIF z poziomu 

lotniczego opracowany przez Forschungszentrum Jülich (Niemcy) we współpracy 

ze SPECIM Spectral Imaging Ltd. (Finlandia). Najważniejsza część badań 

wykonanych w ramach niniejszej rozprawy doktorskiej opiera się na wynikach 
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nalotów z kampanii lotniczej z systemem HyPlant z lipca 2015 r. wykonanych nad 

torfowiskiem Rzecińskm zlokalizowanym w zachodniej części Polski.  

Niniejsza rozprawa doktorska opiera się na cyklu czterech artykułów naukowych 

opublikowanych w latach 2019-2021 w czasopismach o współczynniku wpływu od 

1,53 do 4,85. Struktura doktoratu odzwierciedla treść tych artykułów, zaczyna się 

od ogólnego wprowadzenia do tematu doktoratu, zakładanych celów oraz 

stosowanych metod, a kończy na podsumowaniu i wnioskach. Rozprawa doktorska 

składa się z sześciu rozdziałów. 

Rozdział 1 przedstawia ogólne wprowadzenie do rozprawy doktorskiej i SIF. W 

rozdziale tym przedstawiono cele i hipotezy badawcze pracy. Scharakteryzowano 

rodzaje i źródła sygnałów SIF emitowanych przez rośliny. Ponadto, opisano 

również szczegółowo kampanię lotniczą HyPlant oraz przyjęte metody badawcze 

pozwalające na weryfikacje postawionych hipotez. 

Rozdział 2 dotyczy kompleksowego przeglądu stanu najnowszej wiedzy 

dotyczącego badań nad SIF na poziomie „canopy” (TOC) mierzonych za pomocą 

systemów naziemnych, czy też z wykorzystaniem różnych platform takich jak 

drony, samoloty i satelity. Przegląd literatury światowej obejmuje prace dotyczące 

technik pomiarowych SIF, algorytmów szacowania SIF, modelowania, przykłady 

zastosowania SIF oraz walidacji mierzonych sygnałów z uwzględnieniem różnych 

platform teledetekcyjnych wraz z charakterystyką ich obecnych ograniczeń. 

Rozdział 3 przedstawia pierwsze zobrazowania lotnicze SIF dla obu pasm 

absorpcyjnych O2 przy 687 nm i 760 nm uzyskane nad torfowiskiem Rzecińskim i 

otaczającymi go ekosystemami. W rozdziale tym pokazano również stopień 

zależności między sygnałami SIF w obu pasmach absorpcji O2 a indeksami 

spektralnymi, które były związane z cechami strukturalnymi i funkcjonalnymi szaty 

roślinnej. Przedstawiono również zmienność sygnału SIF wraz z gradientem 

produktywności na torfowisku w skali ekosystemu i dla różnych zbiorowisk 

roślinnych. 

Rozdział 4 przedstawia opis nowego modelu opartego na uczeniu maszynowym, 

który umożliwia symulację sygnałów SIF przy 687nm i 760nm w drodze 

aproksymacji krokowej na podstawie prostych wskaźników spektralnych (NDVI, 

SR, NDVIre, EVI, PRI) pozyskanych ze zobrazowania lotniczego z wykorzystaniem 

metod modelowania rozmytego i technik integracji danych. W rozdziale wykazano, 

że podejście oparte na modelach rozmytych może z dużą dokładnością przybliżać 

wartości sygnałów SIF w obu pasmach absorpcji O2, a także może uchwycić 

strukturalną i funkcjonalną różnorodność roślinności w skali ekosystemu. 

Rozdział 5 przedstawia znaczenie satelitarnych pomiarów spektrometrycznych 

bazujących na współczynnikach odbicia promieniowania i różnych indeksach 

roślinnych w szacowaniu produktywności pierwotnej brutto (GPP) i fotosyntezy 

netto (PsnNet) ekosystemów tropikalnych. W pracy przedstawiono wyniki analizy 

porównawczej różnych metod korelacji (tj. Pearsona, Spearmana i Kendalla) oraz 

nadzorowanych modeli uczenia maszynowego (tj. losowego lasu, warunkowego 

wnioskowania i kwantyli regresji) celem zbadania zgodności i możliwości 
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szacowania GPP oraz PsnNet na podstawie wskaźników spektralnych i reflektanci, 

w warunkach sezonowej zmienności roślinności strefy tropikalnej. 

Rozdział 6 przedstawia syntezę i wnioski rozprawy doktorskiej. Ogólny wniosek 

wskazuje, że rozwijająca się nauka o SIF, obejmująca nowoczesne technologie 

teledetekcyjne, otworzyła nowe kierunki badań nad stanem roślinności 

ekosystemów lądowych i globalnego obiegu węgla, wraz z rozwojem nowych 

naziemnych systemów pomiarowych, takich jak FloXbox (JB Hyperspectral Devices 

GmbH, Germany) i PICCOLO-DOPPIO (The University of Edinburgh, UK), nowych 

przyrządów montowanych na platformach lotniczych jak np. HyPlant, czy rozwój i 

planowanie nowych misji kosmicznych, takich jak budowa satelity FLEX FLORIS 

Europejskiej Agencji Kosmicznej itp.  

Wyniki rozprawy doktorskiej dostarczyły pierwszego eksperymentalnego dowodu 

na to, że poprzez fluorescencję chlorofilu w paśmie czerwonym (SIF687) i dalekiej 

podczerwieni (SIF760) możliwe jest uchwycenie ogromnej niejednorodności 

przestrzennej ekosystemów torfowisk, lasów i użytków zielonych, reprezentujących 

różną aktywność fotosyntetyczną, cechy biochemiczne i strukturalne zbiorowisk 

roślinnych, a tym samym umożliwienie oceny dużego zróżnicowania 

funkcjonalnego szaty roślinnej. Ponadto zaobserwowano, że opracowane techniki 

modelowania rozmytego, nazwane jako SIFfuzzy i SIFfuzzy-APAR, mogą 

przybliżyć z dużą dokładnością wartości sygnałów SIF w obu pasmach absorpcji O2, 

a także są w stanie reprezentować różnorodność strukturalną i funkcjonalną szaty 

roślinnej. Badania te wykazały również, że różnice w warunkach 

meteorologicznych i środowiskowych mają wpływ na aktywność roślin, co znajduje 

odzwierciedlenie w mierzonych wartościach sygnałów spektralnych bazujących na 

obserwacjach satelitarnych, oraz istotnie wpływają na możliwość predykcji GPP i 

PsnNet za pomocą technik teledetekcyjnych. 

 

Słowa Kluczowe: Fluorescencja indukowana promieniowaniem słonecznym (SIF), 

spektralne wskaźniki roślinne, HyPlant, obrazowanie lotnicze, modelowanie 

rozmyte, nauczanie maszynowe, produkcja pierwotna brutto (GPP), torfowisko, las, 

użytki zielone. 
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APAR Absorbed photosynthetic active radiation 
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cForest Conditional inference forests 

EC Eddy Covariance 

eFLD Extended Fraunhofer Line Depth 

ESA European Space Agency 

EVI Enhanced vegetation index 

fAPAR Fraction of Absorbed Photosynthetically Active Radiation 

FESC Escape fraction of SIF photons 

FLD Fraunhofer Line Depth 

FLEX The FLuorescence EXplorer 

GOME 2 Global Ozone Monitoring Experiment-2 

GOSAT Greenhouse Gases Observing Satellite 

GPP Gross primary productivity 

iFLD Improved Fraunhofer Line Depth 

L7 Landsat 7 ETM+ 

L8   Landsat 8 OLI 

LAI Leaf Area Index 

ML Machine Learning 

MODIS Moderate Resolution Imaging Spectroradiometer 

NASA National Aeronautics and Space Administration 

NDVI Normalized difference vegetation index 

NDVIre Normalized difference red edge position 

NIR Near-infrared 

NPP Net primary productivity 

NPQ Non-photochemical quenching 

OCO 2 Orbiting Carbon Observatory-2 

OLI Operational Land Imager 

OOB Out of bag error 

PAR Photosynthetically active radiation 

PRI Photochemical Reflectance Index 

QRF Quantile regression forests 

RF Random Forest 

RS Remote Sensing 

RTM Radiative Transfer Modelling 

S2 Sentinel 2 

SFM Spectral Fitting Method 

SIF Sun-induced chlorophyll fluorescence 

SIF687 Sun-induced chlorophyll fluorescence at 687nm 

SIF760 Sun-induced chlorophyll fluorescence at 760nm 

SIFfuzzy Fuzzy simulated Sun-induced chlorophyll fluorescence 
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SIFfuzzy-APAR Combined fuzzy and Absorbed photosynthetic active radiation 

simulated Sun-induced chlorophyll fluorescence 

SNR Signal to Noise Ratio 

SR Simple Ratio 

SVD Singular Vector Decomposition 

SVIs Spectral Vegetation Indices 

SWAMP Spectrometry of a Wetland and Modelling of Photosynthesis 

SWIR Shortwave Infrared 

TOA Top-of-Atmosphere 

TOC Top-of-canopy 

UAV Unmanned aerial vehicle 

USGS United States Geological Survey 

VIs Vegetation Indices 

VNIR Visible Near Infrared 
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1. Introduction 

Remote Sensing (RS) of Sun-induced fluorescence or solar-induced chlorophyll 

fluorescence (SIF) is an advanced growing front in terrestrial ecosystem science and 

in agricultural studies that have strong capabilities and emerges as a unique signal 

to monitor global vegetation status, encompassing its structural and functional 

diversity from the canopy to ecosystem-scales (Bandopadhyay et al., 2020; 

Mohammed et al., 2019). Measurement and estimation of SIF using different remote 

sensing (RS) platforms greatly enhanced and significantly increased the multiple 

opportunities to monitor, quantify, and model the plant photosynthetic activity in a 

more detailed nature (Yang et al., 2018). The importance and popularity of SIF, is 

not only restricted to the remote sensing communities dealing with plants and 

ecosystems but also beneficial for those working in broader fields related to plant 

physiology, biophysics, biochemistry, and agricultural community (Bandopadhyay 

et al., 2020). Moreover, the strong agreement between SIF and gross primary 

productivity (GPP) enriched the importance of SIF as a prime indicator for terrestrial 

photosynthesis and global carbon cycle reported by several studies such as Damm 

et al., 2010; Gentine and Alemohammad, 2018; Smith et al., 2018; Walther et al., 2016. 

Scientists also consider the novel SIF signal as a prime indicator of climate change 

and its significant impact on terrestrial vegetation and crop production (Kimm et al., 

2021).  

The novel SIF signal emitted from the core of plant photosynthetic machinery was 

captured in the spectral range of 640 nm to 800 nm (Buschmann et al., 2001). The 

plant molecules (plant-derived compounds and related genes) absorb solar energy 

as a form of photons and on the absorption of photons, the plant molecules reached 

their excited state. However, such exciting molecules do not want to stay excited 

about the long term. So, the highly energetic excited molecules release energy 

through vibration, relaxation and photon emission, which is called SIF 

(Bandopadhyay et al., 2020; Narayan et al., 2012). SIF originates from the initial 

reactions in Photosystem (PS) and occurs at the wavelengths between 650 nm and 

780 nm, with the first peak at 690 nm (SIF690), whereas PS I fluorescence occurs in the 

far-red/near-infrared spectrum (>700 nm) with a peak at 760 nm (SIF760) 

(Bandopadhyay et al., 2020; Govindjee, 2004). The full spectrum of SIF covers the 

wavelengths between visible (VIS) to near-infrared (NIR) spectrum from 640–800 

nm. Both PS II and PS I operate in sequential order and are commonly recognized 

by two peak signals identified by their usual wavelength positions at SIF690 and SIF760 

for PS II and PS I, respectively (Buschmann et al., 2001; Govindjee, 2004). 

The advancement of RS technologies offers unprecedented opportunities to monitor, 

and model the terrestrial vegetation in a vivid manner. The development of state-of-

the-art RS-based opportunities helps to understand the status of vegetation, its 

phenology, and its functional activities in real-time as well as in time-series. The 

traditional RS-based observations on terrestrial vegetation and agriculture solely 

rely on the canopy reflectance spectra at different spectral channels. Spectrally 

derived vegetation indices (VIs) are the most common practice on vegetation remote 

sensing. Over time, several spectrally derived VIs have been developed to represent 
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the vegetation traits such as greenness content (Rahaman et al., 2017), leaf area 

(Gitelson et al., 2014), red-edge position (Dong et al., 2019), biomass content (Kumar 

and Mutanga, 2017), water content (Cohen, 1991), zeaxanthin content (Harris et al., 

2014), etc. However, such vegetation traits based on the spectral indices are not 

sensitive enough to monitor the short-term dynamics of vegetation functionalities. 

The photosynthetic process caused by different environmental conditions (i.e., 

incident irradiance, temperature, etc.) or stress factors impacting plant physiology 

is not exposed enough by such spectral indices. As the SIF signal is strongly 

connected with the core of the photosynthetic-process, the short-term changes in 

plant physiological process can be easily captured by SIF signals compared to 

spectral indices. SIF is highly accomplished with estimating and detecting more 

accurate carbon assimilation rates and earlier stress symptoms rather than normal 

reflectance spectra and vegetation indices (Campbell et al., 2008). Furthermore, SIF 

signal is highly dynamic in nature and very sensitive towards the minor changes of 

plant physiological conditions, which can be easily detectable by the modern RS 

technologies in a real-time manner.  

Narrow-band hyperspectral imaging spectrometers are rapidly evolving in the 

contemporary era and provide unique opportunities for mapping and modeling of 

terrestrial vegetation and its functioning through novel SIF signal. Advanced 

features of hyperspectral spectrometers with fine spectral resolutions (<0.1 nm) have 

unique capabilities to capture the weak signals around 640 nm to 800 nm needed to 

retrieve SIF. Development of modern SIF retrieval physics-based methods like 

improved- Fraunhofer line depth (iFLD), full-spectrum Spectral Fitting Method 

(SFM), or statistical methods like singular value decomposition (SVD) facilitates the 

improved and accurate estimations of SIF signals at both O2 absorption bands 

through modern remote sensing techniques (Bandopadhyay et al., 2020; 

Mohammed et al., 2019). The estimation of SIF signal from radiances is mainly 

recorded at the top-of-canopy (TOC) or the top-of-atmosphere (TOA) level, which 

typically constitutes 1–5% of the reflected radiation in the red and NIR regions as a 

very weak signal. The traditional methods for estimating SIF signal exploit the 

regions of the atmospheric spectrum where the incident irradiance is strongly 

reduced due to the absorption in the Earth’s atmosphere (Rossini et al., 2010). The 

two peaks are characterized by the two telluric oxygen absorption features, namely 

O2A at 760.4 nm and O2B at 687.0 nm. To capture such narrow atmospheric 

absorption bands, spectrometers should contain fine full width at half maximum 

(FWHM) of 1–5 nm or ultrafine (FWHM < 1 nm) spectral resolutions in any 

detectable spectrometer based on RS platform. Thus, recent development of 

advanced high-resolution spectrometers with good accuracies and low noise 

explored the scope of SIF estimation at both O2 absorption bands using high-

resolution passive spectrometers on the ground, UAV, airborne, and satellite-based 

RS platforms enriched our understanding of terrestrial vegetation and its 

functionalities.  
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1.1 Significance of the work in the 

contemporary era 

Global changes in the Earth's ecological systems due to climate change, frequent heat 

waves, extreme precipitation, biodiversity loss, artificially increased nitrogen (N) 

inputs, and inadequate phosphorus (P) supply forecasts that the future is 

unprecedented and uncertain for global human civilization. Such modifications in 

ecology and ecosystem services posing a rapidly increasing threat to global food 

production and sustainability worldwide. On the other hand, the global population 

rising rapidly and this trend will continue for upcoming decades. Projections 

indicate a 95% rise of the global population that steeply rise the increasing demand 

on the resources such as food, and water, disturbed living standards, which will 

stress upon terrestrial ecosystems and their inherent productivity and resilience 

(Rohr et al., 2019). 

Observation and accurate quantification of photosynthetic activity of terrestrial 

vegetation from space are still challenging and often the results of estimations are 

very biased. Traditional and available spectral observations are based only on TOC 

reflectance spectra but they are not directly linked to the core of plant photosynthetic 

activities. Chlorophyll fluorescence is the most direct technique and measurable 

signal originating from the core of plant photosynthetic machinery and provides 

new avenues for accessing the dynamics of actual photosynthesis at various spatial 

scales. This unique signal has more potential to monitor actual photosynthesis 

compared to current observations based on passive reflectance spectra in the optical 

range. Moreover, the uptake of CO2 through photosynthesis and the release of CO2 

by respiration and other processes maintains the global biogeochemical balance. 

According to the Intergovernmental Panel on Climate Change (IPCC)  special report 

on global warming in 2018 and in IPCC report 2021 (IPCC report 2021, AR6), the 

post-industrialization phase increased the carbon emission compared to the pre-

industrialization phase further contributed by fossil-fuel combustion, massive 

deforestation, changes in land-use pattern, intensive cultivation, and logging 

(Wigley et al., 2019). In this scenario, a huge uncertainty is developed over the time 

on global sustainability and terrestrial functionality that demands an urgent need to 

access the role of vegetation on the global carbon cycle. Studies have already 

established a strong agreement between the global carbon cycle and plant 

fluorescence activity (Lee et al., 2015; Running et al., 2004) that immensely enriched 

the existing understanding of the carbon cycle. Additionally, the HyPlant sensor 

data, used in this thesis, is the airborne demonstrator of the ESA Fluorescence 

Explorer (FLEX) Sentinel 3 FLORIS satellite (Drusch et al., 2017) considered as a 

significant contribution towards the upcoming satellite mission as well as for 

calibration and validation (CAL/VAL) activities.  
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1.2 Research Scope and Objectives 

The main objective of this thesis is to assess the Sun-induced fluorescence (SIF) and 

reflectance (R) of different ecosystems through ground, airborne and satellite remote 

sensing techniques. The significance of SIF has been well recognized by scientists 

and researchers in the domain of vegetation and agricultural sciences. However, the 

exploration of SIF signals over heterogeneous ecosystems such as for example 

peatlands, where spectral diversity is rich and complex, have not been explored so 

much. There is a significant knowledge gap, about the sensitivity of SIF signals and 

its reaction over spectrally diverse and complex mosaic of different ecosystems and 

this thesis aims at filling this gap with the new knowledge.  

In recent years, the research explored the classical hyperspectral data analysis to 

assess the diversity of peatland vegetation (Erudel et al., 2017). Studies have been 

demonstrated the potential of hyperspectral reflectances that enriched the 

understanding of ecological patterns of peatland and other homogeneous surfaces 

like forests, grasslands and croplands. Time series of phenological changes, gradient 

mapping, structural and functional traits have been also explored by hyperspectral 

reflectances over both homogeneous and heterogeneous landscapes. However, 

comparatively unique SIF signals obtained through narrow-band hyperspectral 

imaging spectrometers originating from photosynthetic machinery have been not 

used yet to monitor and analyze the heterogeneous peatland and mosaic of different 

ecosystems. Moreover, the implementation of narrow band SIF signals on airborne 

imaging spectroscopy is an extremely new technique in support of future space 

missions. Now-a-days the implementation of spaceborne SIF signals over various 

ecosystems is a regular practice compared to modern RS platform-based 

observations such as airborne, UAV, or with advanced high-resolution ground 

spectrometers. To implement and recognize the applications of potential SIF signals 

and to explore its full spectrum using different RS observations, a complete 

document of existing SIF studies is highly demanded and hence it is summarised 

and discussed in the thesis. 

In this research for the first time, telluric oxygen absorption bands of SIF around 760 

nm and 687 nm over heterogeneous peatland and surrounding ecosystems have 

been retrieved from airborne imaging spectroscopy data. Additionally, structural 

and functional traits along with the biochemical components of peatland and 

surrounded ecosystems have been also analyzed through airborne imaging 

spectroscopy obtained SIF signals and spectral reflectances. Therefore, the first 

hypothesis formulated that novel SIF signals have a direct agreement with vegetation 

traits, however, this agreement may vary from plant community scale to ecosystem scale.  

Furthermore, machine-learning-based fuzzy modelling techniques have been 

implemented for the first time to approximate the SIF signals at both oxygen 

absorption bands from vegetation traits obtained from spectral reflectances using 

airborne imaging spectroscopy datasets. The second hypothesis formulated that 

vegetation traits can be used to approximate SIF at both oxygen absorption bands and can 

also replicate SIF signals over different ecosystems in agreement with the original (measured) 

SIF.  
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The predictor variables for gross primary productivity (GPP) and net-

photosynthesis (PsnNet) are highly dynamic in nature influenced by the anomalies 

that occurred due to seasonal and environmental variabilities. Such dynamic nature 

of vegetation functional activities can be possible to measure through satellite 

derived reflectance spectra.   In this research, such anomalies of predictor variables 

for GPP and PsnNet in terms of several vegetation traits obtained through 

spaceborne spectral reflectances have been identified using different supervised 

machine learning models and correlation-based statistical approaches. The third 

hypothesis formulated that seasonal and environmental anomalies cannot only impacted 

the GPP and PsnNet prediction process but also the correlations with vegetation indices.  

Therefore, based on the above-discussed research scopes and hypothesizes the 

following specific objectives were identified in this thesis:  

(1) To evaluate the current potential application of SIF, conducting in-depth survey, 

review, and interpretation of existing SIF studies based on the ground, airborne, 

UAV, and spaceborne observations, in order to identify the current knowledge gap, 

associated limitations and challenges of existing SIF studies (Investigated in chapter 

2, Publication 1)  

(2) To retrieve the first airborne SIF maps at both oxygen absorption bands (SIF760 

and SIF687) of heterogeneous peatland and surrounding ecosystems. Also, 

exploration and analysis of SIF760 and SIF687 signals obtained from different managed 

and natural ecosystems over homogeneous (forest, grassland, etc.) as well as from 

heterogeneous (peatland) ecosystems using airborne imaging spectroscopic data 

(Investigated in chapter 3, Publication 2) 

(3) To understand and compare the inter-relationship between spectral vegetation 

indices and vegetation biophysical parameters with SIF760 and SIF687 signals over 

peatland and surrounding ecosystems from plant community scale to ecosystem 

scale. (Investigated in chapter 3, Publication 2). 

(4) To develop a proxy of SIF signals from simple spectral vegetation indices using 

airborne imaging spectroscopic data. Furthermore, step-wise approximation of the 

novel SIF760 and SIF687 signals from different vegetation traits in terms of spectral 

indices using the fuzzy model and airborne spectrometry (Investigated in chapter 

4, Publication 3)  

(5) To understand the seasonal uncertainties in GPP and PsnNet prediction process 

from satellite derived reflectenace spectra as well as to compare and understand the 

interlink with several spectral vegetation indices and tasselled cap transformations, 

through the implementation of different correlation methods (i.e. Pearson, 

Spearman, and Kendall rank) as well as through different supervised machine 

learning models (i.e. Random forest-RF, Conditional inference forests- cForest, and 

Quantile regression forests- QRF) (Investigated in chapter 5, Publication 4). 
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1.3 Thesis Outline 

The content of this thesis is structured into six chapters. The core of this thesis 

(Chapters 2-5) is based on a series of four-peer reviewed publications. Each chapter 

is outlined here with the basic summaries and connecting its relationship with other 

relevant works. 

Chapter 1 deals with the general introduction of SIF signals and its application with 

hyperspectral remote sensing technologies over terrestrial vegetation. The need for 

this work in the current time along with the research scope, hypothesis, and 

objectives of this thesis are provided in this chapter. 

Chapter 2 addresses the first objective of the thesis. It reviews the existing SIF studies 

based on the ground, airborne, UAV, and spaceborne remote sensing techniques. 

Along with the critical analysis. This chapter provides limitations of such studies 

and explored the knowledge gaps and future scopes.  

Chapter 3 investigates the second objective of this thesis. It presents the first airborne 

SIF maps at 760 nm and 687 nm over heterogeneous peatland ecosystems and their 

surrounding ecosystems (forest and grassland). Interpretation and interlinks 

between SIF signals with vegetation traits and biophysical parameters from 

ecosystem to plant community scales are reported in this chapter.   

Chapter 4 focuses on development of alterative methodological approach of SIF 

estimation. The chapter deals with the fuzzy modelling technique that can simulate 

the novel SIF signals from airborne derived spectral vegetation indices in agreement 

with original SIF signals. The step-wise approximation of SIF760 and SIF687 from 

different vegetation traits is also addressed in this chapter.  

Chapter 5 addresses the impact of seasonal and environmental anomalies in the GPP 

and PsnNet prediction process based on the comparisons of correlation and 

supervised machine learning models using MODIS Terra and Landsat 8 OLI 

datasets over a tropical mixed ecosystem.  

Finally, chapter 6 presents the synthesis of this thesis with conclusions, main 

findings, and suggestions for future work. 

 

2. Materials and Method 

2.1 Site Description 

The core part of the research work portrayed in this thesis has been conducted over 

the Rzecin (POLWET) peatland area located in the western part of Poland. There are 

two main justifications behind the selection of this study area: (1) peatland is a 

unique ecosystem composed of wide species diversity and has around one-third of 

the terrestrial carbon stored in it that plays a crucial role in the global carbon cycle; 

(2) the implementation and observation of novel SIF signals over the peatland 

ecosystem are very new and contemporary with the highest challenges of complex 
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spectral diversity originated from mixed-species populations. The geographical 

extension of Rzecin peatland located in between 52°45′N latitude, 16°18′E longitude, 

with 54 m a.s.l. extended over an area of 114 hectares. The Rzecin peatland is 

extremely valuable from flora and fauna diversity and conservation perspectives 

that it comes under the Natura 2000 network of protected areas covering Europe’s 

most valuable and threatened species and habitats (“Torfowisko Rzecinskie” 

PLH300019). This research is not only focused on the heterogeneous peatland, but 

also includes surrounding homogeneous patches of pine forest, grassland, 

deforestation sites, and cropland. 

More details about the Rzecin study site along with the locational map is provided 

in chapter 3 and chapter 4.  

The study portrayed in chapter 5 was carried out in and around the Gorumara 

National Park (GNP) of Dooars region, West-Bengal, India. The study area enriched 

with mixed ecosystems like forest, tea gardens, croplands, mountainous vegetation, 

terai grassland, swampland, and rivers that comes under humid subtropical climate. 

More details about the GNP and its surrounding study site along with the locational 

map is provided in chapter 5. 

 

2.2 Airborne Hyperspectral Measurements 

On 11th July 2015, HyPlant airborne campaign have been organised and funded by 

the European Space Agency (ESA) under Fluorescence Explorer FLEX-EU mission, 

European Facility for Airborne Research (EUFAR) and Cost Action OPTIMISE 

(ES1903) at the Rzecin peatland in Poland. This airborne campaign have been 

acknowledged as Sprectrometry of a wetland and modelling of photosynthesis: 

hyperspectral airborne reflectance and fluorescence in education and research (SWAMP) 

campaign and SWAMP summer school that involved group of students, researchers, 

scientists, professors from different institutions of Europe. Different peoples were 

involved in different activities from field data collection, airborne data collection, 

calibration activities etc. and most of them have been listed as co-authors of the 

publication 2 and their contribution is acknowledged in the paper. 

HyPlant airborne imaging spectrometer has been flown over the Rzecin peatland 

site, installed on a Cessna Grand Caravan C208B (a turboprop aircraft) owned and 

operated by CzechGlobe, Czech Republic. At a flying altitude of 690 meters, six 

flight lines were acquired between 09:50 to 10:46 and 13:10 to 13:55 resulting in the 

images in a spatial resolution of 1 × 1 m per pixel. The airborne HyPlant imaging 

spectrometer constellated with two push-broom sensors: (1) a broadband dual-

channel module (DUAL module) which captured surface reflected radiance with the 

spectral resolution of 3 nm in the visible and near-infrared (VIS/NIR) regions and 

about 10 nm in the short-wave infrared (SWIR) region; it covered a spectral range of 

370–2500 nm, and (2) narrow-band spectrometer (FLUO module) which covered the 

red and far-red region of the electromagnetic spectrum ranges from 670 to 800 nm, 

with a spectral resolution of 0.25 nm. DUAL module outputs have been used to 
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acquire the reflectances followed by the development of spectral VIs, whereas the 

FLUO module provides SIF760 and SIF687 images.  

The atmospheric corrections have been conducted through ATCOR (Atmospheric & 

Topographic Correction model, ReSe Applications Schläpfer, Langeggweg, 

Switzerland) based on 5S radiative transfer model (RTM) to obtain Top-of-Canopy 

(TOC) reflectance and radiance values. Furthermore, topographic corrections, geo-

rectifications of the airborne images have been conducted using the CaliGeo toolbox 

(SPECIM, Oulu, Finland). The data processing chain and calculations needed to 

retrieve reflectance and SIF from airborne data has been done by Dr. Patrick 

Rademske from Plant Sciences, Forschungszentrum Jülich, Germany and Dr. Sergio 

Cogliati from Department of Earth and Environmental Sciences, University of 

Milano-Bicocca, Italy within the FLEX-EU (ESA) project.  

More details and specifications about the airborne hyperspectral measurement are 

provided in chapter 3 and chapter 4.  

 

2.3 Field Hyperspectral Measurements 

Two spectrometers within HR4000 (OceanOptics, Largo, FL, USA) covering 

different wavelength ranges were used to estimate TOC reflectance and SIF. One of 

them operated in the visible and near-infrared region (350–1050 nm) spectral range 

with a full-width half maxima (FWHM) of 1 nm have been utilized to compute the 

radiance and spectral VIs. Another spectrometer covered the spectral range 650–840 

nm with a spectral resolution of 0.2 nm (FWHM) and has been utilized to estimate 

the SIF signals at both oxygen absorption bands at 760 nm (SIF760) and 687 nm 

(SIF687). Both the spectrometers were spectrally calibrated with standards using 

CAL-2000 mercury argon lamp, OceanOptics, Largo, FL, USA whereas radiometric 

calibration was inferred from cross-calibration measurements performed with a 

reference calibrated FieldSpec spectrometer (Analytical Spectral Device, Boulder, 

CO, USA). These measurements has been done and data were processed by Dr. 

Tommaso Julitta from Department of Earth and Environmental Sciences, University 

of Milano-Bicocca, Italy. 

Other technical details of the field hyperspectral measurements are provided in 

chapter 3.  

The field hyperspectral measurements have been carried out on 11th July 2015 (same 

day and time of the airborne measurement) at midday from 11:00 to 14:20 solar time 

under clear sky conditions at nine plots (V1–V9). The the nine ground measurement 

plots were located along the main boardwalk in the South-North direction and they 

were representing different vegetation—i.e., from Carex dominated communities 

and Typha dominated communities (high biomass of vascular plants) to Sphagnum 

dominated communities (low biomass of vascular plants) dominated groups. More 

details about the vegetation composition of nine measurement plots with locational 

details have been provided in Figure 2 and Table 2 from Chapter 3 (publication 2). 
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Additionally, on the day of 11th July 2015, Leaf Area Index (LAI), Photosynthetically 

active radiation (PAR), and Fraction of Absorbed Photosynthetically Active 

Radiation (fAPAR) have been measured with BF5 sensor (DELTA-T, UK) over the 

Rzecin peatland.These measurements has been done by Dr Karolina Sakowska from 

Institute of BioEconomy, Italian National Research Council. Weather data have been 

acquired from the weather station placed in the middle of the Rzecin peatland.  

 

2.4 Computation of vegetation indices 

Several spectral vegetation indices representing different vegetation traits related to 

plant physiology, chemical composition, structure, xanthophyll pigments, and 

water content were calculated from TOC reflectances acquired from the HyPlant 

DUAL-channel module (indicated in 2.2 section) as well as from hyperspectral 

radiometers used for the ground-truth measurements (indicated in 2.3 section). VIs 

like Normalized Difference Vegetation Index (NDVI) and Simple Ratio (SR) 

representing greenness content, Photochemical Reflectance Index (PRI) representing 

xanthophyll content, Normalized Difference red-edge position (NDVIre) 

representing vegetation red-edge position, Enhanced Vegetation Index (EVI) have 

been calculated based on equations provided in chapter 3 and chapter 4.  

 

2.5 Retrieval of SIF through Spectral Fitting 

Method (SFM) 

The far-red SIF (SIF760) and red SIF (SIF687) maps over the Rzecin peatland have been 

computed based on Spectral Fitting Method (SFM). Both airborne SIF maps and 

ground SIF have been estimated using the SFM method. Due to the prototyped 

nature of the system and established processing chain by ESA FLEX mission, the 

SFM based SIF maps have been processed by Dr. Sergio Cogliati from University of 

Milano-Bicocca, Italy. I have calibrated and rescaled the SFM maps over the Rzecin 

peatland in my study broadly discussed in section 2.6 of the chapter 3 (publication 

2).  

The SFM algorithm requires high spectral resolution-based measurements both 

from the ground and airborne sensors. The technique depends on the analysis of the 

radiance spectra in high spectral resolution at the O2 absorption bands (O2-A and 

O2-B at 760 and 687 nm, respectively), where the fluorescence contribution to the 

overall canopy emerging radiance was larger. More details about the SFM method 

have been discussed by Cogliati et al., 2015.  

The fluorescence retrieval approach consisted of two main components: i) The 

atmospheric radiative transfer was computed through MODTRAN5 (MODerate 

resolution atmospheric TRANsmission) Radiative Transfer (RT) model; while ii) the 

decoupling of fluorescence radiances and reflectance was achieved based on the 

spectral fitting technique. The pre-processing steps include radiometric and spectral 

calibration, correction of detector non-linearity, and the deconvolution of the 
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instrument point-spread-function (PSF). The retrieval was carried out through the 

comparison of the HyPlant and the forward-modelled radiance spectrum in defined 

spectral windows at the sensor level. The SFM module implemented in the airborne 

HyPlant datasets is based on the third-order polynomial functions and Pseudo-

Voigt functions to approximate reflectance and fluorescence spectral behaviour. 

SFM starts the preliminary estimation of fluorescence values inside the O2 

absorption bands for faster convergence and provides the outputs with the full 

spectrum of fluorescence.  

The SFM algorithm was developed for the FLEX FLORIS (ESA) satellite, however, it 

was implemented for HyPlant airborne datasets to demonstrate it reliability and 

applicability. The TOA radiance is first converted to TOC radiance through the 

atmospheric correction process, and further, the bottom of atmosphere radiance 

spectra deconvoluted into the contributions of fluorescence and reflected light 

fluxes. The fluorescence emission peaks of red SIF at 687 nm and far-red SIF at 760 

nm are modelled through the combination of different functions like Gaussian, 

Lorentzian, and Voigt. Through the implementation of the least-squares non-linear 

curve fitting optimization process, it minimizes the processing time. 

More details about the SFM function and its implementation for SIF retrieval from 

HyPlant data were provided in chapter 3.    

 

2.6 Fuzzy Modelling  

The fuzzy logic simulations are similar as people make inferences and decisions 

based on observations. Fuzzy assemble flexible combinations of weighted maps and 

possible to readily implemented using spatial modelling language. The theory and 

concept of fuzzy logic were first implemented by Zadeh, 1965  and was widely 

accepted by other scientific fields applications in hydrology, geomorphology, 

environmental. The fuzzy technique considers the degree of membership by the 

input variables through the membership function techniques. The membership sets 

of the different input variables ranging between 0 and 1 reflecting a certain degree 

of the membership where 0 represents no membership and 1 represents high 

membership. Furthermore, it employs the assimilation of memberships to obtain the 

best possible outcomes through five possible overlay operators such as fuzzy And, 

fuzzy Or, fuzzy Product, fuzzy Sum, and fuzzy Gamma.   

However, the implementation of fuzzy logic in the approximation of SIF signals 

using airborne imaging spectroscopy is very new and has been applied for the first 

time. In this thesis, the fuzzy modelling technique was used for the first time to 

approximate the SIF signals at far-red SIF (SIF760) and red SIF (SIF687) through several 

combinations of the vegetation traits. First, the vegetation traits in terms of spectral 

VIs were transformed to membership functions and further several iterations were 

run with different combinations of the spectral VIs using fuzzy Gamma operator. 

More details about the fuzzy modelling technique implemented in this thesis are 

discussed in chapter 4.  
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2.7 Supervised Machine Learning models 

Supervised machine learning (ML) modelling techniques becomes popular in recent 

time that offers unprecedented robust applications in all aspects of Earth 

observation science. Such ML algorithms have become widely accepted by the Earth 

observation community because of their high-precision accuracy and less processing 

time. The implementation of such ML techniques to satellite derived reflectance 

based spectral indices, tasseled cap transformations for GPP and PsnNet prediction 

process is a new and modern technique. In this thesis, three decision based 

supervised ML models namely random forest (RF), conditional inference forests 

(cForest), and quantile regression forests (QRF) were compared to identify and 

explore the prediction process of GPP and PsnNet under the Indian seasonal 

variability from several VIs, spectral bands, and tasselled cap transformations using 

MODIS and Landsat 8 OLI data. To train and evaluate the models the entire dataset 

was divided into 70% for training and 30% for testing in all three prediction models. 

The RF model is a meta estimator that develops a number of decision trees based on 

different sub-samples of the dataset and the final prediction is computed by the 

averaging of the decision trees. The cForest model considers a more accurate and 

better estimator than RF in terms of accuracy as it uses out-of-bag (OOB) data that 

ensures more insight and higher accuracy. The QRF model considers the quantile 

distributions (0.05 percentile to 0.95 percentile) of predictor variables to predict the 

target through building RF.  

Further details about RF, cForest, and QRF were discussed in chapter 5.  
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Abstract: Remote sensing (RS) of sun-induced fluorescence (SIF) has emerged as a 

promising indicator of photosynthetic activity and related stress from the leaf to the 

ecosystem level. The implementation of modern RS technology on SIF is highly 

motivated by the direct link of SIF to the core of photosynthetic machinery. In the last 

few decades, a lot of studies have been conducted on SIF measurement techniques, 

retrieval algorithms, modeling, application, validation, and radiative transfer 

processes, incorporating different RS observations (i.e., ground, unmanned aerial 

vehicle (UAV), airborne, and spaceborne). These studies have made a significant 

contribution to the enrichment of SIF science over time. However, to realize the 

potential of SIF and to explore its full spectrum using different RS observations, a 

complete document of existing SIF studies is needed. Considering this gap, we have 

performed a detailed review of current SIF studies from the ground, UAV, airborne, 

and spaceborne observations. In this review, we have discussed the in-depth 

interpretation of each SIF study using four RS platforms. The limitations and challenges 

of SIF studies have also been discussed to motivate future research and subsequently 

overcome them. This detailed review of SIF studies will help, support, and inspire the 

researchers and application-based users to consider SIF science with confidence. 

Keywords: sun-induced fluorescence; remote sensing; ground observations; UAV; airborne 

observations; spaceborne observations 

 

Conclusion and Future Prospects 

The science of SIF incorporating modern RS technology is a rapidly emerging front 

advancing the knowledge in terrestrial vegetation and the global carbon cycle. Such wide 

and dynamic application prospects with its emerging capabilities make SIF highly 

attractive for global research communities. However, quantifying and applying SIF 

through different RS observations is an appealing prospect, but it is also very challenging 

[1]. In this article, we have provided an in-depth review of existing SIF studies from the 

ground, UAV, airborne and spaceborne measurements. However, a rule of thumb or finest 

practice to address the best method, application, instrument, calibration-validation process, 

and modeling have not been proposed. Few challenges and future directions are indicated 

here to motivate future research on SIF with confidence. First, the need for the validation 

of SIF signals is highly required, as SIF cannot be measured independently from vegetative 

targets; it can only be retrieved through dedicated methods. Hence, without actual 
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measurements, original SIF values and the accuracy of the applied method cannot be 

determined. Second, it is highly necessary to understand and troubleshoot the sources of 

uncertainties that are associated with the SIF estimation process. The accurate estimation of 

SIF values in physical units and its correct interpretation is essential in application, as SIF 

estimations are highly affected by atmospheric (i.e., aerosols and cloud cover) factors and 

may depend on the instrument/system configuration and stability. Thus, the estimation of 

SIF should be done carefully, as such challenges need to be minimized or erased. Third, in 

reality, the use of a particular SIF retrieval method is restricted by the instrument or sensor 

availability [1]. SIF data collection through RS observations should be at very high spectral 

resolution, which will allow the user for subsequent resampling for multispectral or 

hyperspectral algorithm-based SIF estimations. Fourth, the validation of SIF values is a key 

concern for the leaf to ecosystem-level SIF applications. Such a requirement is highly 

necessary when one is working with heterogeneous ecosystems. The chances of mixing 

signals are more prominent in heterogeneous systems in comparison to homogeneous 

systems. However, validation is a real challenge for sensors and instruments with limited 

spatial resolutions [19]. In this scenario, new-generation efficient instruments, high-

resolution UAV and airborne sensors, or satellite demonstrators (such as HyPlant for the 

FLEX mission) are overcoming this issue in a timely manner.  

In this context, the rationale behind the FLEX mission proposal is to successfully 

implement a satellite mission that will provide accurate SIF retrieval at both O2A and O2B 

absorption bands. Such a mission will help to reduce the spatio-temporal uncertainties 

associated with SIF as well as strengthen the global vegetation and carbon estimation 

models.  

In this review, we have discussed the in-depth interpretation of the existing SIF studies 

from the ground, UAV, airborne, and spaceborne observations. We have demonstrated the 

applied methods for SIF retrieval, instruments/sensors, target areas, and the aim of the 

previous studies. Over time, it has been observed that the acceptance of SIF has been 

increased in comparison to traditional optical RS-based vegetation monitoring approaches. 

The performance of a novel SIF signal (evident from publications) is a current interest for 

researchers in comparison to traditional vegetation indices. The vegetation indices are 

indicators of greenness, biomass, and water content, while SIF is directly linked to the 

photosynthetic mechanism. Much work has been done to show the superiority of SIF over 

spectral vegetation indices; for example, the SIF has been shown to be a stronger proxy of 

GPP than EVI [174], and it was more sensitive to drought [162] or other stress factors [75-

85]. The underlying mechanism behind the observation is that the SIF contains more 

physiological information than the spectral vegetation indices [93]. The goal of several 

studies was not only to demonstrate the capability for the SIF signal, but also to showcase 

the development of SIF retrieval methods and its application over different targets. It has 

been proven that the application of SIF ranging from the monitoring of plant 

photosynthesis, stress detection, and plant growth monitoring has been fruitfully employed 

along with traditional RS-based reflectance-based methods. 

 

There is a strong possibility for the development of SIF science, particularly in the field of 

ground, UAV, airborne, and spaceborne SIF studies. However, it is highly necessary to 

continue the future efforts toward the development of technological suits and operations to 

capture the reliable SIF signals in a spatio-temporal framework. Hand-held devices, mobile 
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field instruments for ground measurements, advanced UAV sensors, advanced and precise 

airborne sensors, and spaceborne sensors with high SNR and radiometric stability can make 

a strong contribution toward the enhancement for future SIF science [19]. The efforts 

toward the development of airborne demonstraters for satellite missions (HyPlant for FLEX 

mission, CFIS for OCO-2 mission) along with the calibration–validation through novel 

ground systems (such as FloX box and PICCOLO-DOPPIO) are highly necessary in future 

SIF science to obtain accurate, reliable, and precise SIF values from any kind of 

homogeneous or heterogeneous ecosystems. Apart from this, systematic and efficient 

technical planning for ground, UAV, airborne campaigns, and spaceborne missions should 

be an important consideration in future SIF measurements. As SIF is highly dynamic and 

very sensitive to the atmospheric influences, the effective subtraction of such external 

effects for accurate SIF estimation should be always a prime concern in any kind of 

measuring campaigns. The capabilities and efficiencies in terms of the accuracy of SIF 

retrieval algorithms and models must be enriched so that they can work perfectly over any 

kind of vegetative surfaces. To get such a robust algorithm and accurate model, continuous 

efforts must be performed. In this regard, it is highly relevant to test all four kinds of RS 

platforms measured data, to develop best SIF retrievals algorithms and models. It will help 

to understand the plant functionality at any spatial scale. These SIF retrieval algorithms and 

models must be tested over both simple (grassland) and complex (forest, peatland) 

ecosystems where plant structural and functional diversity is maximum. However, to 

achieve the high accuracy of the models with reliable SIF values, sufficient spatial and 

temporal resolutions, high SNR, and radiometric stability is needed for any kind of SIF 

measuring platforms to avoid processing errors and reduce biases in SIF estimations. In a 

very recent trend, the assimilation of SIF datasets obtained from all four platforms along 

with supporting ancillary data with machine learning and deep learning modules could 

enrich the future of SIF science. Author Contributions: S.B., A.R., and R.J. conceptualized the 

work. SB prepared the first draft. A.R. and R.J. edited the draft. R.J. supervised the work and 

arranged the required funding. All authors read and approved the final manuscript. 
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Abstract: Hyperspectral remote sensing (RS) provides unique possibilities to monitor 

peatland vegetation traits and their temporal dynamics at a fine spatial scale. Peatlands 

provide a vital contribution to ecosystem services by their massive carbon storage and 

wide heterogeneity.  However, monitoring, understanding and disentangling the diverse 

vegetation traits from heterogeneous landscape using complex RS signal is challenging 

due to its wide biodiversity and distinctive plant species composition. In this work, we 

aimed to demonstrate for the first time the large heterogeneity of peatland vegetation traits 

using well-established vegetation indices (VIs) and Sun-Induced Fluorescence (SIF) for 

describing the spatial heterogeneity of the signals which may correspond to spatial 

diversity of biochemical and structural traits. SIF originates from the initial reactions in 

photosystems and is emitted at the wavelengths in between 650-780 nm, with the first peak 

at around 687nm and second peak around 760nm. We used the first HyPlant airborne data 

set recorded over a heterogeneous peatland area and its surrounding ecosystems (i.e. 

forest, grassland) in Poland. We deployed a comparative analysis of SIF and VIs obtained 

from differently managed and natural vegetation ecosystems as well as from diverse small 

scale peatland plant communities. Furthermore, spatial relationships between SIF and VIs 

from large scale vegetation ecosystems to small scale peatland plant communities were 

examined. Apart from signal variations, we observed a positive correlation between SIF 

and greenness sensitive VIs, whereas a negative correlation between SIF and a VI sensitive 

to photosynthesis was observed for large scale vegetation ecosystems. In general, higher 

https://www.researchgate.net/institution/Poznan_University_of_Life_Sciences/department/Department_of_Land_Improvement_Environmental_Development_and_Geodesy?_iepl%5BgeneralViewId%5D=zKGS9HWj21o56lpJ7KPFRA5h5hY4Af7K9Cby&_iepl%5Bcontexts%5D%5B0%5D=searchReact&_iepl%5BviewId%5D=6zHVHAomwfGqBB17YKpghCLqOdiFC87UGfGx&_iepl%5BsearchType%5D=researcher&_iepl%5Bdata%5D%5BcountMoreThan20%5D=1&_iepl%5Bdata%5D%5BinteractedWithPosition1%5D=1&_iepl%5Bdata%5D%5BwithEnrichment%5D=1&_iepl%5Bposition%5D=1&_iepl%5BrgKey%5D=AC%3A4111520&_iepl%5BinteractionType%5D=departmentView
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values of SIF were associated with higher biomass of vascular plants (associated with 

higher Leaf Area Index (LAI)). SIF signals, especially SIF760 were strongly associated with 

the functional diversity of the peatland vegetation. At the peatland area, higher values of 

SIF760 were associated with plant communities of high perennials, whereas, lower values 

of SIF760 indicated peatland patches dominated by Sphagnum. In general, SIF760 reflected 

the productivity gradient on the fen peatland, from Sphagnum dominated patches with the 

lowest SIF and fAPAR values indicating lowest productivity to the Carex dominated 

patches with the highest SIF and fAPAR indicating highest productivity.  

Keywords: HyPlant; Sun-Induced Fluorescence (SIF), peatland; spectral Vegetation Indices; NDVI; 

SR; EVI; PRI; fAPAR, LAI, Spectral Fitting Method; airborne campaign 

 

2. Material and Methods 

 

Figure 1. Location of the Rzecin peatland experimental site in Wielkopolska region, 

Poland. RGB composite map was obtained by combining reflectance bands at 156 nm, 105 

nm, 51 nm for the red, green, and blue bands, respectively, including flight lines of the 

HyPlant over the site during the SWAMP campaign on 11th July 2015. 
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Figure 2. Location of the ground validation plots (V1-V9) at the Rzecin peatland area 

during the SWAMP campaign, 11th of July 2015. The plots were located on both sides of the 

boardwalk shown in the UAV (Unmanned Aerial Vehicle) map. 

Table 2. Detailed description of the validation plots (V1 to V9) with the corresponding coordinates, 

dominant species, Leaf Area Index (LAI) of vascular plants and fraction of photosynthetically active 

radiation absorbed by plant canopy (fAPAR). 

 

 Target Coordinates Dominant species 
LAI* 

(m2 m-2) 

fAPAR* 

(-) 

V1 
52.75933°N, 

16.30989°E 
Carex gracilis 4.8±0.5 0.93±0.03 

V2 
52.76022°N 

16.30969°E 

Carex lasiocarpa, Menyanthes trifoliata, Oxycoccus 

palustris, Equisetum fluviatile, Sphagnum teres 
1.7±0.5 0.68±0.19 

V3 
52.76067°N 

16.30986°E 

Typha latifolia, Carex rostrata, Lycopus europaeus, 

Lythrum salicaria, Calliergonella cuspidata, 

Drepanocladus polycarpos, Sphagnum teres 

0.8±0.4 0.18±0.09 

V4 
52.76086°N 

16.30975°E 

Carex rostrata, Comarum palustre, Menyanthes 

trifoliata, Sphagnum angustifolium, Sphagnum teres 
1.4±0.4 0.20±0.12 

 

V5 

52.76086°N 

16.30975°E 

Carex rostrata, Comarum palustre, Menyanthes 

trifoliata, Sphagnum angustifolium, Sphagnum teres 
1.4±0.4 0.20±0.12 

 

V6 

52.76136°N 

16.30969°E 

Sphagnum teres, Carex rostrata, Comarum palustre, 

Drosera rotundifolia 
0.9±0.3 0.12±0.07 

V7 
52.76136°N 

16.30969°E 

Carex rostrata, Comarum palustre, Sphagnum 

angustifolium 
1.0±0.3 0.16±0.07 

 

V8 

52.76178°N 

16.30964°E 

Sphagnum teres, Carex rostrata, Oxycoccus 

palustris, Drosera rotundifolia 
0.4±0.1 0.06±0.04 

 

V9 

52.76178°N 

16.30964°E 

Sphagnum teres, Carex rostrate, Oxycoccus 

palustris, Sphagnum angustifolium,   
0.4±0.1 0.06±0.04 

*LAI measured by means of SunScan system (Delta-T Devices, UK). fAPAR calculated as a ratio between APAR 

and incident PAR (PARi). APAR calculated as a difference between PARi and a sum of PAR transmitted trough 

the canopy and PAR reflected from the canopy. All PAR values measuered by SunScan system. 
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Figure 3. Boundaries of 158 ROIs identified within the HyPlant image and categorized into 19 

unique vegetation groups (a); and location of 52 plots inside the peatland and its boundaries, 

categorized into 20 unique plant communities (b). Detailed characteristics of the plant 

communities within the 52 plots are presented in Table S1 (Supplementary Table). 

Legend a): (i) Forest vegetation groups: herbaceous vegetation of forest clearings (HV); wooded 

dunes with Pinus sylvestris (WDPS); semi-natural forests with Pinus sylvestris (SeFPS); secondary 

forest communities with Pinus silvestris (SFPS); Betula pendula - secondary forest communities 

(BPFS); riparian forests (RF); secondary forest communities with Alnus glutinosa (SFAG); 

deciduous forest (DF); (ii) Grassland vegetation groups: post-agriculture land (PG); pioneer 

vegetation of sandy and shallow soils (PVS3); mowed meadows and mesic pastures (CM); 

meadows and mesic pastures (MMP); (iii) Peatland vegetation groups: calcareous fens (CF); 

transition mires (TM); sedge vegetation (SV); rush vegetation (RV); rush vegetation/alkaline 

fens (RVAF); low birch bush (LBB); alder forest (AF).  

Legend b): (i) Meadows plant communities (ME): Agrostis capillaris-Hieracium pilosell (AP): 41; 

Mowed grassland (MG): 49,51,52; Semi mowed grassland (SMG): 48,50; Corniculario-

Corynephoretum (CC): 37,47; Stellario palustris-Deschampsietum caespitosae (SPDC): 40; (ii) 

Peatland Rush communities (PR): Cladietum marisci (CM): 24; Phragmitetum communis (PC): 

5,10,17,32; Caricetum lasiocarpae (CL): 1, 2, 11, 19, 25, 44, 46; Thelypterido-Phragmitetum (TP): 8; 

Typhetum latifoliae (TL): 30,43; (iii) Fen Vegetation communities (FE): Caricetum diandrae (CD): 

21; Caricetum limosae (CLi): 14; Caricetum paniculatae (CP): 29,45; Caricion lasiocarpae (CLa): 13; 

Communities with dominated Sphagnum teres (CST): 16; Menyantho-Sphagnetum teretis (MST): 4; 

Sphagno apiculati-Caricetum rostrata (SACR): 3, 6, 7, 12, 15, 20, 22, 35; Sphagno recurvi-Eriophoretum 

angustifolii (SREA): 9, 18, 23, 34, 36; Sphagno-Caricetum rostrata (SCR): 42; Sphagnum teres (ST): 33.  
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3. Results 

3.1. Interpretation of VIs and SIF for different vegetation groups 

 

Figure 4. Airborne maps of the different vegetation indices from the experimental site 

derived from DUAL module (370-2500nm) of the HyPlant with a spatial resolution of 1m x 

1m per pixel. The data was recorded on 11th July 2015 and was acquired during the 

afternoon overpasses of HyPlant. (a) Simple Ratio (SR), (b) Normalized Difference 

Vegetation Index (NDVI), (c) Enhanced Vegetation Index (EVI), (d) Photochemical 

Reflectance Index (PRI), (e) SIF map for O2A (760 nm), and (f) SIF map for O2B (687 nm). 

The associated range of each vegetation indices and SIF maps is represented in colour 

stretch on the left. 
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3.2. Validation of VIs and SIF maps from HyPlant  

 

Figure 5. Validation of airborne HyPlant derived VIs and SIF with the ground observations 

on corresponding plots; (a) SR, (b) NDVI, (c) EVI, (d) PRI, (e) SIF at 760 nm (f) SIF at 687 

nm. Error bars represent the spatial variability of the index values within the selected plots 

during HyPlant overpasses. Note: HyPlant SIF values were retrieved from the rescaled data 

(for details see section 2.3.1). 

  

Figure 6. Relationship between HyPlant derived SIF and LAI and fAPAR at the ground 

validation plots. Note: HyPlant SIF values were retrieved from the rescaled data (for details 

see section 2.3.1). 
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3.3. Analysis of VIs and SIF at vegetation group level (for peatland, grassland and forest 

ecosystems) 

 

Figure 7. Bar diagram presenting the average values of the observed VIs and SIF derived 

from HyPlant data; (a) SR, (b) NDVI, (c) EVI, (d) PRI, (e) SIF760, (f) SIF687. The names of the 

individual vegetation groups are written in the bottom of the bars and correspond to the 

abbreviations provided with Figure 3a. Dark grey group of bars represents the peatland 

ecosystem; light grey bars represent different kinds of grasslands (including the post-

agricultural land, pioneer vegetation of sandy and shallow soil); and white grey bars stand 

for different kind of forests. Error bars represent standard deviation. 

  

Figure 8. Correlation analysis of SIF at 760 nm (Figures a to d) and at 687 nm (Figures e to 

h) with selected remotely sensed VIs (SR, NDVI, and PRI) at the vegetation group level. 

Error bars represent standard deviation. Here, black dots denote peatland, light grey dots 

denotes grasslands, and white represents forest vegetation groups. 
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3.4. Performance of VIs and SIF signals at the peatland plant community level 

 

Figure 9. Bar diagram presenting the average values of the observed vegetation indices 

and SIF derived from HyPlant data; (a) SR, (b) NDVI, (c) EVI, (d) PRI, (e) SIF760, and (f) 

SIF687. The codes corresponding to the names of the individual plant communities are 

written at the bottom of the bars and corresponds to the abbreviations provided with 

Figure 3b. Detail description of these plant communities is provided in Table S1 

(supplementary material). The first group of bars represents  meadows (ME), the second 

group of bars represents peatland rush (PR) vegetation communities, and the third group 

of bars stands for the fen (FE) vegetation communities. Error bars represent standard 

deviation. 
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Figure 10. Correlation analysis of SIF at 760 nm and at 687 nm with selected remotely 

sensed vegetation indices (SR, NDVI, EVI, and PRI) at vegetation community level 

restricted to peatland area. Plant communities were grouped for three categories of 

meadows (ME), peatland rush vegetation (PR) and fen vegetation (FE), and were presented 

separately for each group. Codes names correspond to those provided with Figure 3. Error 

bars represent standard deviation. 

5. Conclusions 

Our results are the first experimental evidence of the possibility to retrieve both red 

(SIF687) and far-red (SIF760) chlorophyll fluorescence signals over heterogeneous ecosystems 

such as peatlands. The reliability and capacity of a novel airborne HyPlant sensor were also 

demonstrated in this paper that successfully captures complex vegetation signals from 

extremely heterogeneous peatland. The results are valid for some specific conditions and 

status of the peatland dependent on the hydrometeorological and climatological conditions 

related to the summer conditions. Hence, the findings cannot be extrapolated and may not 

be valid out of the season when status of the peatland, greenness of the surface, and biomass 

of plants are different. 

Although all the results of this study depend on one-day airborne measurement, the 

results have illustrated a promising method to understand the dynamic degree of 

relationships between SIF and VIs at different hierarchical scales using HyPlant, the 

airborne demonstrator of ESA FLEX mission. We conclude on the importance of 

hyperspectral RS information representing a diverse set of vegetation traits including 

biochemical, structural, and functional traits to comprehensively assess the complex 

ecosystems such as peatlands and to capture the wide diversity of different vegetation 

groups and peatland plant communities. 

In such a complex ecosystems like peatlands, we suggest quantifying and analysing 

red and far-red fluorescence peaks to improve our understanding and facilitate predictions 
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of functional dynamics in larger vegetation groups and small plant community levels, 

which are determined by complex interplays between functional and structural regulations. 

Comprehensive measurements of SIF, fAPAR, LAI, and VIs help in the advance 

estimations of photosynthesis activity, biochemical and structural traits, and facilitate 

assessments of the wide functional diversity of vegetation groups and plant communities 

occurring in such ecosystems. Since SIF is considered as a prime indicator of photosynthetic 

activity, and is clearly correlated with fAPAR and LAI, we can assume that diversity in SIF 

maps reflects the diversity in their photosynthetic activity which may correspond to 

photosynthetising biomass of vascular plants. Our results successfully support this claim 

for the first time in heterogeneous surfaces like peatland. This may further enrich our 

knowledge in a local, regional and global understanding of the photosynthetic activity of 

natural ecosystems. 
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Can Vegetation Indices serve as Proxies for Potential 

Sun-induced Fluorescence (SIF)? A Fuzzy Simulation 

Approach on Airborne Imaging Spectroscopy data 

Subhajit Bandopadhyay1,2*, Anshu Rastogi1,3, Sergio Cogliati4, Uwe Rascher5, Maciej Gąbka6 and 

Radosław Juszczak1* 
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the Netherlands 
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5Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Leo-Brandt-Str., 
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6Department of Hydrobiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu 

Poznańskiego 6, 61-614 Poznań, Poland 

* Correspondence: radoslaw.juszczak@up.poznan.pl 

Abstract: In this study, we are testing a proxy for red and far-red sun-induced fluorescence 

(SIF) using an integrated fuzzy logic modelling approach, termed as SIFfuzzy and SIFfuzzy-

APAR. The SIF emitted from the core of photosynthesis aperture and observed at the top-of-

canopy is regulated by three major controlling factors: (1) light interception and 

absorption by canopy plant cover; (2) escape fraction of SIF photons (fesc); (3) light use 

efficiency and non-photochemical quenching (NPQ) processes. In our study, we proposed 

and validated a fuzzy logic modelling approach that uses different combinations of 

spectral vegetation indices (SVIs) reflecting such controlling factors to approximate the 

potential SIF signals at 760 nm and 687 nm. The HyPlant derived and field validated SVIs 

(i.e. SR, NDVI, EVI, NDVIre, PRI) have been processed through the membership 

transformation in the first stage, and in the next stage the membership transformed maps 

have been processed through the fuzzy Gamma simulation to calculate the SIFfuzzy. To test 

whether the inclusion of absorbed photosynthetic active radiation (APAR) increases the 

accuracy of the model, the SIFfuzzy was multiplied by APAR (SIFfuzzy-APAR). The agreement 

between modelled SIFfuzzy and actual SIF airborne retrievals expressed by R2 ranged from 

0.38 to 0.69 for SIF760 and from 0.85 to 0.92 for SIF687. Whereas, the inclusion of APAR 

improved the R2 value between SIFfuzzy-APAR and actual SIF. This study showed for the first 

time that a diverse set of SVIs considered as proxies of different vegetation traits, such as 

biochemical, structural, and functional can be successfully combined to work as a first-

order proxy of SIF. The previous studies mainly included the far-red SIF whereas, in this 

study, we have also focused on red SIF along with far-red SIF. The analysis carried out at 

1 m spatial resolution permits to better infer SIF behaviour at ecosystem relevant scale. 

Keywords: Sun-Induced Fluorescence; SIFfuzzy; SIFfuzzy-APAR; spectral vegetation indices; 

HyPlant; fuzzy logic modelling 
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2. Material and Methods  

2.5. Fuzzy logic modelling of SIF proxy from reflectance-based vegetation indices   

 

Figure 3. Scheme of the research methodology and different steps of data processing from 

HyPlant data acquisition to model building and validation of the outputs. 

 

2.5.1. Fuzzy Membership Transformation 

Table 2. The mathematical equations of membership functions and justifications for 

considering membership transformation function for individual HyPlant derived SVIs. 

HyPlant 

SVIs 

Membership 

Functions 
Equations Justifications References 

SR 

Fuzzy MS 

Large  

 

 

 
  

Positive strong 

correlation with SIF 
 [1] 

NDVI 
Positive strong 

correlation with SIF 
[1] 

NDVIre 
Positive strong 

correlation with SIF 

(Suplumetary 

file - Fig. S1) 

EVI Fuzzy Linear 
 

Positive poor 

correlation with SIF 
[1] 

PRI 
Fuzzy MS 

Small  

 

Negetive 

correlation with SIF 
[1] 
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2.5.2. Fuzzy Overlay operation 

 

Figure 4. Schema of the fuzzy logic modelling system adopted in this study showing the 

progress from the input variable to the membership transformation in order to overlay 

operation to the final output. 

 

2.5.3. Experiment on different fuzzy combinations 

Table 3. The fuzzy logic model combinations with objectives and equations.  

Combinations Objectives Equations Code 

Combination 

1 

Approximate 

SIF based on 

greenness and 

biomass 

related SVIs 

(without/with 

inclusion of 

APAR) 

 

 

C1 

Combination 

2 
 

 

C2 

Combination 

3 

Approximate 

SIF based on 

greenness and 

xanthophyll 

cycle related 

SVIs 

(without/with 

inclusion of 

APAR) 

 

 

C3 

Combination 

4 
 

 

C4 

Combination 

5 

Approximate 

SIF based on 

greenness, 

biomass and 

xanthophyll 

 

 

C5 



Chapter 4: Remote Sensing, 2021, 13, 2545 

49 
 

cycle related 

SVIs 

(without/with 

inclusion of 

APAR) 

Combination 

6 

Approximate 

SIF based on 

greenness, 

biomass, 

xanthophyll 

cycle and red-

edge position 

related SVIs 

(without/with 

inclusion of 

APAR) 

 

 

C6 

*f stands for function.  

 

 

3. Results 

3.1. Outcome of the membership maps 

0 1

No Membership High Membership

(A) (B) (C) (D) (E)

 

Figure 5. Membership maps of the different SVIs: A) MF_NDVI; B) MF_SR; C) 

MF_NDVIre; D) MF_EVI and E) MF_PRI, derived from the fuzzy membership 

transformation functions. The membership maps ranging from 0 to 1 represent no 

membership to high membership, respectively. 
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3.2. Performance of SIFfuzzy 

 

Fig. 6. Simulated SIFfuzzy maps developed through the integration of membership maps and 

fuzzy gamma approach for C1-C6 combinations: (A) C1 SIFfuzzy; (B) C2 SIFfuzzy; (C) C3 

SIFfuzzy; (D) C4 SIFfuzzy; (E) C5 SIFfuzzy; and (F) C6 SIFfuzzy. The colour stretch in the left 

represents the range of C1-C6 SIFfuzzy maps. 

 

 

Table 4. Summary of the statistics (R2 - coefficient of determination, p-value, SE - standard 

error, R - correlation coefficient and RMSE - root mean square error) of linear regressions 

between SIFfuzzy vs. SIF760 and SIFfuzzy vs. SIF687. The statistical operational outputs were 

derived based on 19 ROIs representing vegetation groups of the forest, grassland, and 

peatland. 

Combi- 

nations 
SIFfuzzy functions  R2 p value SE 

Pearson’s 

r 

RMSE 

mW·m−2·sr−1 nm−1 

SIFfuzzy vs. SIF760 

C1 SIFfuzzy (NDVI+EVI) 0.38 <0.05 0.172 0.61 0.259 

C2 SIFfuzzy (SR+EVI) 0.55 <0.001 0.167 0.74 0.300 

C3 SIFfuzzy (NDVI+PRI) 0.61 <0.001 0.185 0.78 0.184 

C4 SIFfuzzy (SR+PRI) 0.69 <0.001 0.176 0.83 0.235 

C5 SIFfuzzy (NDVI+EVI+PRI) 0.51 <0.01 0.195 0.71 0.193 
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Figure 7. Scatterplots of the best performing fuzzy logic model outputs (SIFfuzzy) and actual 

SIFs (SIF760 and SIF687) were determined based on HyPlant airborne data. A & B – SIFfuzzy 

expressed by f(NDVI+EVI+NDVIre+SR+PRI) under model C6; C & D - SIFfuzzy expressed by 

f(NDVI+PRI) under model C3; E & F - SIFfuzzy expressed by f(SR+PRI) under model C4. 

Standard deviations are represented in error bars. The letter abbreviations correspond to 

the codes of vegetation groups presented in Fig. 2. 
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SIFfuzzy vs. SIF687 

C1 SIFfuzzy (NDVI+EVI) 0.85 <0.001 0.083 0.92 0.090 

C2 SIFfuzzy (SR+EVI) 0.89 <0.001 0.083 0.94 0.114 

C3 SIFfuzzy (NDVI+PRI) 0.90 <0.001 0.092 0.95 0.154 

C4 SIFfuzzy (SR+PRI) 0.90 <0.001 0.098 0.95 0.109 

C5 SIFfuzzy (NDVI+EVI+PRI) 0.90 <0.001 0.086 0.95 0.143 

C6 
SIFfuzzy 

(NDVI+EVI+NDVIre+SR+PRI) 
0.92 <0.001 0.069 0.96 0.082 
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Figure 8. Example of bar diagrams represents the modelled values of SIFfuzzy obtained from 

19 ROIs; A) SIFfuzzy as expressed by f(NDVI+PRI) under C3; B) SIFfuzzy as expressed by 

f(NDVI+EVI+NDVIre+SR+PRI) under C6. Error bars represent the standard deviations. 

5. Conclusions 

The novel development of our research termed as SIFfuzzy and SIFfuzzy-APAR was the first 

experimental evidence for quantitative demonstration of the fuzzy logic approach showing 

that the combination of SIF influencing factors represented by different SVIs can 

approximate the potential SIF signals at both oxygen absorption bands at 760 nm and 687 

nm. It demonstrated also the efficiency of the integrated fuzzy logic model towards the 

step-by-step approximation of SIF signals through a process-based approach. This is also 

the first study that considers the red fluorescence into the prediction process which is 

extremely new and not covered in other published works. 

Our experiment was also the first that reports the ability of simple airborne reflectance-

based SVIs to produce a proxy of potential SIF. Both SIFfuzzy and SIFfuzzy-APAR worked quite 

accurately to approximate the SIF signals, where SIFfuzzy were closer to SIF687 values, 

whereas SIFfuzzy-APAR were better correlated with SIF760 as expressed by higher R2 and lower 

RMSE. 

Hence, it has been evident and recommended that the utilization of SIFfuzzy under 

model C3 and C4 for SIF760 and C6 for SIF687 or SIFfuzzy-APAR under C6 for both SIF760 and SIF687 

would be the optimum solution to develop the proxy of potential SIF signals at 760 nm and 

687 nm with high accuracy. The study also showed that EVI and NDVI which can be 

available from spaceborne products can be used to approximate the SIF signals to some 

extent. Although this study employed one-day airborne campaign data, the outcome of this 

study demonstrated a promising method to develop a proxy of potential SIF, where and 

when SIF data is not easily available or under data constraint situations. Though the 

proposed method does not have a significant impact on the change of observation day, 

however slight changes in the agreements may occurred during seasonal changes and 

atmospheric anomalies.  

As we have applied the HyPlant airborne datasets which is the airborne demonstrator 

for Fluorescence Explorer (FLEX) Sentinel 3 FLORIS satellite, we believe our study will 

significantly contribute to the ESA FLEX mission research and existing SIF studies. We 

believe also that the contribution from our study and the development of SIFfuzzy, and 

SIFfuzzy-APAR models will enrich our understanding of SIF science and global carbon cycles. 

We have not performed the SIFfuzzy and SIFfuzzy-APAR on the satellite dataset, but we believe 

that the model will work for it (however it still needed to be validated). Thus, the proposed 
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model is possible to be applied through satellite-derived SVIs from Sentinel 2, Landsat, 

MODIS, etc. to develop a SIF proxy and can be related to SIF products retrieved from 

spaceborne OCO-2 or GOME-2 satellites. We proved that our modelled SIFfuzzy and SIFfuzzy-

APAR are capable to reflect the diversity of potential plant photosynthetic activity from 

multiple ecosystems. Therefore, such studies may further develop our knowledge of the 

local, regional, and global photosynthetic activity and carbon cycle in natural ecosystems. 
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Abstract. The global interaction of CO2 fluxes are highly dynamic under seasonal and inter-annual variability. 

Thus, precise estimation of GPP and PsnNet under seasonal variations are important to understand the global 

carbon cycle and ecosystem response to climate variability. Considering this significance, in this paper, we 

have conducted a comparative investigation of correlation (i.e. Pearson product, Spearman rank, and Kendall 

rank) and supervised machine learning models (i.e. Random Forest- RF, Conditional Inference Forests- 

cForest, and Quantile Regression Forests- QRF) to explore the agreement and prediction of GPP and PsnNet 

under seasonal variability from spectral indices, tasseled cap transformations and reflectances over a mixed 

ecosystem assembling MODIS and Landsat data. Associated uncertainties and errors have been also compared. 

This study was carried out in a tropical moist ecosystem under pre-monsoon (March) and post-monsoon 

(October) conditions. Overall outcome revealed that seasonal differentiation does not affect the simple 

correlations, however, it has a significant impact on the GPP/PsnNet prediction process. Near-infrared (NIR) 

based spectral indices have been found with the best agreements and statistically significant (p<0.001) with 

GPP/PsnNet during March and October ranging coefficients from 0.85 to 0.44 in all three regression models. 

However, Landsat 8 OLI band reflectances in different regions of the electromagnetic spectrum have gained 

importance as best predictors during March, whereas NIR based indices have been found as best predictors for 

GPP/PsnNet during October. Anomalies in environmental and meteorological conditions have a strong impact 

on plant functional activities that significantly differs prediction process rather than simple correlations.  

Keywords: GPP, PsnNet, Machine Learning, Monsoon, India, Landsat 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mailto:Subhajit.iirs@gmail.com
mailto:lopita1990@gmail.com
mailto:das.rahuld@gmail.com


Chapter 5: Journal of Applied Remote Sensing 2021, 15(1), 014523 

56 
 

2. Materials and Methods 

2.1 Study Area 

 

Fig. 1 Location of the Gorumara National Park (GNP) and surroundings displayed in RGB (B4, B3, B2) 

combination of Landsat 8 OLI. The distribution of different ecosystems was also given over the study area 

surveyed from high-resolution Google Earth maps. 

 

 

Fig. 2 The graphical representation of the climatic phenomena i.e. Temperature, Relative Humidity, 

Precipitation over the study area.   
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2.2 Datasets 

Table 1 Metadata of the acquired MOD17A2H and Landsat 8 OLI data products. 

 

 

 

Pre-

monsoon 

Product Product no. Date of 

acquisition 

Retrieval 

MOD17A2H MOD17A2HA2H.A2018065.h26v06.006.2018074043624 06-MAR-

2018 

GPP and 

PsnNet 

 

Landsat 8 

OLI 

 

LC08_L1TP_139041_20180307_20180320_01_T1 

 

07-MAR-

2018 

Bands, 

VIs, and 

Tasseled 

Caps 

Post-

monsoon 

MOD17A2H MOD17A2HA2H.A2018297.h25v06.006.2018312192104 24-OCT-

2018 

GPP and 

PsnNet 

 

Landsat 8 

OLI 

 

LC08_L1TP_138042_20181026_20181114_01_T1 

 

26-OCT-

2018 

Bands, 

VIs, and 

Tasseled 

Caps 

 

 

 

2.3 Methodology  

2.3.1 Downscaling of MODIS GPP and PsnNet products 

 

Fig. 3 Image to image correlation between downscaled MODIS 30 meter GPP/PsnNet products with Landsat 

8 OLI 30 meter VIs representing different vegetation traits such as greenness content by NDVI, biomass 

content by SLAVI, canopy moisture content by GVMI and chlorophyll content by CIgreen (marked in yellow 

box). (a) Pre-Monsoon: March; (b) Post-Monsoon: October.  

(a) (b)
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Fig. 4 Research methodology adopted for GPP and PsnNet prediction under pre and post monsoonal conditions.  
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3. Results 

3.1 GPP and PsnNet relation under seasonal variability 

 

Fig. 5 Representation of GPP and PsnNet with predictor variables NDVI, NIR band and SBI during March and 

October 2018. One variable from each category of predictor variables (i.e. NDVI from 16 VIs, NIR from 6 L8 

bands, SBI from 3 tasseled cap transformations) have been shown. Maximum and minimum of value of each 

image have been shown in the left. NDVI, NIR and SBI are unit less.   

 

 

Fig. 6 Inter-relationship between GPP and PsnNet during March (pre-monsoon) and October (post-monsoon) 

conditions.  
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3.2 Selected variables from Boruta ML operation 

 

Fig. 7 Representation of feature selections using Boruta feature selection algorithm for (a) March GPP (b) 

October GPP  and (c) March PsnNet (d) October PsnNet. 

3.3 Outcome of the correlation analysis 

 

Fig. 8 The Pearson product correction between GPP and PsnNet with 25 predictor variables (6 spectral bands, 

3 tasseled caps, and 16 spectral indices) during (a) March and (b) October. The red grids were showing the 

positive and strong agreements whereas blue grids represented the negative weak relationships. Statistically 

non-significant relationships were marked in cross. 

 

 

(a) (b)

(c) (d)

(a) (b)
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3.3.2 Spearman rank correlation outcomes 

 

Fig. 9 The Spearman rank correction between GPP and PsnNet with 25 predictor variables (6 spectral bands, 3 tasseled 

caps, and 16 spectral indices) during (a) March and (b) October. The red grids were showing the positive and strong 

agreements whereas blue grids represented the negative weak relationships. Statistically non-significant relationships 

were marked in cross. 

 

3.3.3 Kendall rank correlation outcomes 

 

Fig. 10 The Kendall rank correction between GPP and PsnNet with 25 predictor variables (6 spectral bands, 3 

tasseled caps, and 16 spectral indices) during (a) March and (b) October. The red grids were showing the 

positive and strong agreements whereas blue grids represented the negative weak relationships. Statistically 

non-significant relationships were marked in cross. 

 

 

(a) (b)

(a) (b)
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Table 3 Represents the best agreement variables for GPP and PsnNet during March and October in three 

correlation models namely Pearson, Spearman and Kendall rank. The degree of agreement for Pearson denoted 

with R, for Spearman denoted with ρ, and for Kendall rank denoted with τ. Importantly all the agreements 

under three models were statistically significant (p<0.001)  

Target Pearson Correlation (R) Spearman Correlation (ρ) Kendall rank correlation (τ) 

March 

GPP 

SLAVI  (0.79) 

WDRVI (0.78) 

NDVI (0.75) 

WDRVI (0.72) 

NDVI (0.71) 

IPVI (0.71) 

WDRVI (0.53) 

NDVI (0.52) 

IPVI (0.52) 

October 

GPP 

WDRVI (0.87) 

SR (0.85) 

PVR (0.84) 

WDRVI (0.85) 

NDVI (0.84) 

IPVI (0.84) 

WDRVI (0.67) 

NDVI (0.66) 

IPVI (0.66) 

March 

PsnNet 

SLAVI  (0.72) 

WDRVI (0.71) 

NDVI (0.70) 

CIgreen (0.64) 

WDRVI (0.63) 

NDVI (0.61) 

WDRVI (0.45) 

NDVI (0.44) 

IPVI (0.44) 

October 

PsnNet 

WDRVI (0.73) 

SR (0.72) 

PVR (0.71) 

WDRVI (0.72) 

CIgreen (0.70) 

IPVI (0.69) 

WDRVI (0.51) 

NDVI (0.50) 

IPVI (0.50) 

 

3.4 Outcome of the predictive modelling  

3.4.1 RF based prediction outcomes 

 

Table 4: The table showed the top predictor variables, accuracy (R2), uncertainty (RMSE), and Out-of-bag error 

of prediction (OOB) details of the RF based prediction model. 

Target Top predictors R2 RMSE (gC m−2 day−1) OOB 

March GPP B2, B3, B4, CIgreen, B7 0.84 0.051 0.230 

October GPP B2, WDRVI, CIgreen, NDVI, WET 0.81 0.122 0.221 

March PsnNet B2, B4, B3, MNDWI, CIgreen 0.84 0.057 0.208 

October PsnNet B2, B4, WDRVI, SR, CIgreen 0.77 0.355 0.238 
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Fig. 11 Selection of optimum number of variables based on the least error for 10-fold cross-validation for the 

RF based prediction for GPP and PsnNet from 25 predictor variables (6 spectral bands, 3 tasseled caps, and 16 

spectral indices). Fig. 10(a) March GPP, Fig. 10(b) October GPP, Fig. 10(c) March PsnNet, Fig. 10(d) October 

PsnNet. Variable importance reported with %IncNodePurity, and reduction in error reported in %IncMSE. 

 

3.4.2 cForest based prediction outcomes 

Table 5: The table showed the top predictor variables, accuracy (R2), uncertainty (RMSE), and Out-of-bag 

error of prediction (OOB) details of the cForest based prediction model. 

Target Top predictors R2 RMSE (gC m−2 day−1) OOB 

March GPP B4, B3, B2, B7, SLAVI 0.82 0.040 0.215 

October GPP WDRVI, SR, CIgreen, NDVI, IPVI 0.80 0.013 0.264 

March PsnNet B2, B3, B4, SBI, WDRVI 0.80 0.035 0.251 

October PsnNet B2, WDRVI, SR, B4, B3 0.71 0.017 0.201 

 

3.4.3 QRF based prediction outcomes 

Table 6: The table showed the top predictor variables, accuracy (R2), uncertainty (RMSE), and Out-of-bag error 

of prediction (OOB) details of the QRF based prediction model. 

Target Top predictors R2 RMSE (gC m−2 day−1) OOB 

March GPP B4, B7, B2, B3, SBI 0.81 0.011 0.242 

October GPP B2, WDRVI, IPVI, SR, NDVI 0.80 0.013 0.221 

March PsnNet B2, B4, B3, SBI, B7 0.81 0.042 0.218 

October PsnNet B2, EVI, MNDWI, B4, B3 0.80 0.012 0.249 

 

 

(a) (b)

(c) (d)
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Fig. 12 Selection of optimum number of variables based on the least error for 10-fold cross-validation for the cForest 

based prediction for GPP and PsnNet from 25 predictor variables (6 spectral bands, 3 tasseled caps, and 16 spectral 

indices). Fig. 11(a) March GPP, Fig. 11(b) October GPP, Fig. 11(c) March PsnNet, Fig. 11(d) October PsnNet. 

Variable importance reported with %IncNodePurity. 

 

Fig. 13 Selection of optimum number of variables based on the least error for 10-fold cross-validation for the QRF 

based prediction for GPP and PsnNet from 25 predictor variables (6 spectral bands, 3 tasseled caps, and 16 spectral 

indices). Fig. 12(a) March GPP, Fig. 12(b) October GPP, Fig. 12(c) March PsnNet, Fig. 12(d) October PsnNet. 

Variable importance reported with %IncNodePurity and reduction in error reported in %IncMSE. 

%IncNodePurity

%IncNodePurity%IncNodePurity

%IncNodePurity(a) (b)

(c) (d)

(a) (b)

(c) (d)
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5. Conclusions 

The present study highlights the utility of different reflectance regions from Landsat 8 OLI in terms of bands, 

spectral indices related to vegetation traits and tasseled cap transformations to predict GPP/PsnNet during 

seasonal and inter-annual variability. This study has also emphasized and incorporated different correlation 

and ML models to understand the agreement and predict the best variables for GPP/PsnNet. We have observed 

under changing meteorological and environmental conditions; the agreement and predictor variables are 

changing for GPP/PsnNet. This suggest that simple remotely sensed VIs are not sufficient to predict carbon 

budget in terms of GPP/PsnNet when meteorological and environmental conditions are dynamic. This study 

has also shown the usefulness of commonly used correlation-based techniques and current state-of-the art 

decision tree-based ML models for two different kind of satellite data, namely Landsat 8 and MODIS GPP 

products. To reduce the uncertainty in prediction process using several remotely sensed data, such approach 

can be used to generate the sufficiently accurate prediction models for better estimation of GPP/PsnNet, carbon 

budget at regional to global scale.  

 

Four key outcomes have been derived from this study:  

(1) Higher amount of net photosynthesis is proportional to higher productivity even under seasonal and inter-

annual variability.  

 (2) Correlation-based techniques and supervised predictive models show completely different outcomes 

mainly during pre-monsoon March, where best predictors of GPP and PsnNet are different from the best 

correlation agreements with GPP and PsnNet. The best predictors and best agreement variables for GPP/PsnNet 

are quite similar during post-monsoon October.  

(3) Environmental and meteorological differentiations during March (pre-monsoon) and October (post-

monsoon) do not make any impact on the agreements between 25 predictor variables and GPP/PsnNet observed 

in all three correlation models. 

(4) Environmental and meteorological differentiations during March (pre-monsoon) and October (post-

monsoon) made an impact on GPP and PsnNet prediction process where differences can be observed among 

25 predictor variables in different conditions. 

Thus, it can be suggested that based on the output of the agreements, the estimation of GPP/PsnNet would be 

inconclusive where prediction models show different results particularly during seasonal and inter-annual 

variability. We believe that the comparative study that we presented in this paper, effectively identifies the 

uncertainties and underlying causes in GPP/PsnNet estimation process and can improve accurate estimation of 

carbon budget from local to global scale. Our findings will further help to gain knowledge about how the 

variation in climatic conditions impacts the GPP/PsnNet estimation process. This study primarily relies on 

MODIS GPP/PsnNet products. However future studies can explore novel Sun-induced fluorescence signal as 

studied by [112] for the predictive modelling of GPP/PsnNet under seasonal variability. We believe that our 

study will help the environmentalist, scientists, researchers, and decision makers in order to accurately estimate 

GPP/PsnNet. The presented work has a potential to support environmental policy makers in their decision-

making process particularly in tropical ecosystems where seasonal and inter-annual diversities are quite rich.     
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Synthesis 

The outcome of this thesis provides new innovative methods to explore novel SIF signals 

at both oxygen absorption bands over extremely complex ecosystems to enrich our deep 

understanding of SIF science and terrestrial photosynthetic activities. It is also the first 

experimental evidence of the possibility of retrieving both red (SIF687) and far-red (SIF760) 

chlorophyll fluorescence signals over heterogeneous ecosystems, such as peatlands and 

link these signals to different plant groups/communities. The credibility and capacity of the 

novel airborne HyPlant sensor which is also the airborne demonstrator of Sentinel-3 FLEX 

FLORIS satellite were evidenced by this thesis. Moreover, implementation of satellite 

derived reflectance based spectral indices, tasseled cap transformations have been utilized 

for GPP and PsnNet prediction process through state-of-the-art ML and corrletaion based 

models over a mixed ecosystem. Such research will improve our understanding on 

terrestrial photosynthetic activity and global carbon fluxes.  

The concluding remarks of each chapter were discussed below for a better understanding 

of the achievements of this thesis. 

The in-depth review from chapter 2 evident that the novel SIF signal incorporating modern 

RS technology is a rapidly emerging front in terrestrial vegetation studies and the global 

carbon cycle. However, the quantification and accurate estimation of SIF remain a 

challenge. But, the modern innovations in ground instruments, UAV sensors, frequent 

airborne measurements as well as ongoing and upcoming advanced satellite missions try 

to minimize those challenges through the innovative methods of observation. Under the 

conditions of modern and frequent development of sensors, instruments, retrieving 

algorithms, models it is difficult to address the finest practice of the best method, 

application, instrument, calibration-validation process, and modelling. However, the 

efforts toward the development of ground instruments (i.e. FloX box and PICCOLO-

DOPPIO), airborne sensors (i.e. HyPlant, CFIS), and advanced spaceborne sensors (i.e. 

FLEX FLORIS, OCO-2, TROPOMI) have significantly improved and extended the 

understanding of SIF science and terrestrial vegetation activity.  

Chapter 3 provides the first experimental evidence for retrieving both red (SIF687) and far-

red (SIF760) chlorophyll fluorescence signals over heterogeneous peatland ecosystem where 

spectral diversity is highly rich and complex. Despite high spectral diversity, HyPlant SIF 

sensor successfully captured complex vegetation signals from heterogeneous surface of 

peatland. Though the obtained results are valid for one-day measurement, the proposed 

method adopted in this chapter can be illustrated for other heterogeneous landscapes. 

Furthermore, the adopted method to understand the dynamic relationship between SIF and 

VIs at different hierarchical levels can be also applied to other landscapes. In this chapter, 

it has been also observed that airborne obtained SIF signals can also capture the structural 

and functional diversity of the peatland and its surrounding ecosystems such as forest, 

grassland, etc. from plant community level to ecosystem scale. The simultaneous 

measurement of fAPAR, LAI, and VIs along with SIF signals have been also conducted at 

the day of airborne campaign. It helps to connect the SIF signals at both oxygen absorption 
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bands with vegetation biochemical, structural, and functional traits over the peatland 

ecosystem for the first time. The experimental evidence from this chapter provides new 

insights that SIF signals at both oxygen absorption bands are connected with the gradient 

of the plants of the peatland ecosystem and is connected to biomass of vascular plants. 

Though the measurement is based on one-day observation in summer, study noticed the 

environmental and meteorological dependency of emitting SIF signals and reflectances 

over the peatland vegetation. This study have also observed a connection between SIF 

signals and VIs that regulates the structural and functional traits of the peatland vegetation.. 

The key messages from this chapter will further improve our understanding of peatland, 

forest and grassland  photosynthetic activities not only at the local scale of Rzecin peatland 

and its surroundings, but also in larger regional and global scales. .  

Chapter 4 provides novel methodological experimental evidence to approximate the SIF 

signals from simple VIs using HyPlant airborne imaging spectroscopic data. The proposed 

SIFfuzzy and SIFfuzzy-APAR can approximate and replicate not only the SIF760 but also the weaker 

SIF687 signal in an efficient way. The proposed fuzzy modelling techniques allow the step-

wise approximation of the novel SIF signals and also demonstrated the capacity to 

approximate the red SIF signal (SIF687) which is a relatively weaker signal and not much 

experimented with by existing literature. This work also demonstrates the first 

experimental evidence that reflectance-based vegetation traits can approximate and 

replicate the SIF760 and SIF687 signals where SIFfuzzy has a higher degree of association with 

SIF687 values and SIFfuzzy-APAR has mainly associated with SIF760 values. To underastand the 

best combition for SIF prediction through fuzzy modelling technique, multiple combination 

of spectral indices in terms of their traits have been examined. Under the several 

combinations, this work found that SIFfuzzy under the models C3 (SIFfuzzy = f(NDVI+PRI)) and 

C4 (SIFfuzzy = f(SR+PRI)) better approximate the SIF760 and model C6 

(SIFfuzzy=f(SR+NDVI+EVI+NDVIre+PRI)) better approximate the SIF687 whereas, the SIFfuzzy-

APAR under C6 for both SIF760 and SIF687 would be the optimum solution to approximate the 

original SIF signals. The proposed method of fuzzy simulation can be also implemented in 

other study sites apart from the peatland ecosystem and also on a global scale. The evident 

method of fuzzy simulation can act as significant support and help to develop the proxy or 

replication of SIF signals from simple spaceborne or airborne SVIs under the data constraint 

situation as well as where SIF data is not so easily available. Though in this study fuzzy 

simulation has been applied over HyPlant derived SVIs, the methodology can be applied 

for spaceborne SVIs like EVI, NDVI derived from mostly used satellite datasets like Landsat 

8, Sentinel-2, MODIS, etc. The potential SIFfuzzy and SIFfuzzy-APAR can also represent the 

structural and functional diversity of the peatland ecosystem as well as for surrounding 

ecosystems in agreement with the Bandopadhyay et al., 2019. This may further improve 

our understanding of local, regional, and global photosynthetic activity and the carbon 

cycle. As in this work HyPlant airborne datasets have been used, it demonstrated the 

capabilities of the HyPlant sensor for FLEX FLORIS satellite to monitor potential SIF 

dynamics over multiple ecosystems. 
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Chapter 5 emphasized and compared different correlation methods (i.e. Pearson, Spearman 

rank, Kendall rank) and different ML models (RF, cForest, QRF) to explore the agreement 

and contribution of variables like bands, spectral indices, and tasselled cap transformations 

to predict the GPP and PsnNet under seasonal and inter-annual variability. This work has 

been found that the best agreements differed from the best predictor in relation to GPP and 

PsnNet in different seasonal conditions. Furthermore, this work has also found that a higher 

amount of PsnNet is incorporated with high productivity under both seasonal conditions. 

It has been observed that the environmental and meteorological conditions during March 

(pre-monsoon) and October (post-monsoon) have no visible impact in all three correlation 

models whereas the monthly variability has a strong impact on the prediction process. It 

has been also detected that NIR-based spectral indices like (i.e., NDVI, IPVI, SLAVI, 

WDRVI, and CIgreen) have strong agreement with GPP and PsnNet under both seasonal 

conditions. The connection between NIR and plant productivity has been well evident by 

this study where higher productivity, as well as higher NIR reflectance, were observed 

during October and vice-versa conditions in March. As the best agreements differed from 

the best predictors for GPP and PsnNet, therefore, it can be stated that the variables of 

simple correlation-based outputs were not properly represented the predictors and they are 

not sufficient enough to predict the GPP and PsnNet. The underlying causes and 

uncertainties related to in GPP and PsnNet estimation process have been also discussed in 

this work. The research presented in chapter 5 may improve the accurate estimation of the 

carbon budget from local to global scales and further it enriches our understanding of 

terrestrial productivity. As this study also incorporates the seasonal influences on the 

prediction process, it evident that climate, weather and surrounding environmental 

conditions have a major impact not only on vegetation productivity but also on its 

prediction process. This will help to enrich our existing understanding on the influences of 

environmental and climatic factors in terrestrial productivity under seasonal dynamics.   

This work may also help the environmentalist, scientists, researchers, farmers, and 

decision-makers in building sustainable environmental policies under climate change 

conditions. 

 

 

 


